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Abstract

Background—In studies with surrogate outcomes available for all subjects and true outcomes 

available for only a subsample, survival analysis methods are needed that incorporate both 

endpoints in order to assess treatment effects.

Methods—We develop a semiparametric estimated likelihood method for the proportional 

hazards model with discrete time data and a binary covariate of interest. Our proposed method 

allows for real-time validation of surrogate outcomes and flexible censoring mechanisms.

Results—Our proposed estimator is consistent and asymptotically normal. Through numerical 

studies, we showed that our proposed method for estimating a covariate effect is unbiased 

compared to the naïve estimator that uses only surrogate endpoints and is more efficient with 

moderate missingness compared to the complete-case estimator that uses only true endpoints. We 

further demonstrated the advantages of our proposed method in comparison to existing approaches 

when there is real-time validation. We also illustrated the use of our proposed method by 

estimating the effect of gender on time to detection of Alzheimer's disease using data from the 

Alzheimer's Disease Neuroimaging Initiative.

Conclusions—The proposed method is able to account for the uncertainty of surrogate 

outcomes by using a validation subsample of true outcomes in estimating a binary covariate effect. 

The proposed estimator can outperform standard semiparametric survival analysis methods, and 

can therefore save on costs of a trial or improve power in detecting treatment effects.
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Introduction

In clinical trials, interest often lies in comparing the effects of treatment on time to an event. 

The Cox proportional hazards model is a common method for analyzing true survival 

outcome data, but true outcomes are often unavailable due to invasiveness or cost 

restrictions. Surrogate outcomes are often used as an alternative to true outcomes since they 

are more widely available, but mismeasured surrogate outcomes may produce mismeasured 

survival estimates. Sometimes, data on both the mismeasured surrogate outcomes and a 

subset of true outcomes are available.

For example, we consider estimation of the time to pathological detection of Alzheimer's 

disease (AD), which can be measured by a cerebral spinal fluid (CSF) assay of amyloid beta 

(Aβ) protein concentrations. Although the gold standard for pathological diagnosis of AD is 

autopsy, a diagnosis after death does not provide information about time to AD. 

Furthermore, abnormality of CSF values is highly correlated with autopsy diagnosis and is a 

well-accepted measure for pathological diagnosis of AD among living participants in 

research studies,1 and thus represents the true outcome without error in the current study. 

However, the CSF assay requires a lumbar puncture to extract spinal fluid, which is 

considered too invasive for some patients. Therefore a CSF-based outcome has limited 

availability. Alternatively, clinical detection of AD based on cognitive tests may be used as 

a surrogate for the pathological detection of AD since it is easier to obtain. However, the 

clinical symptoms of AD present differently from the pathological signs and therefore 

measures the true outcome with error. The clinical assessment is more widely available, so 

we have surrogate outcomes on all subjects, whereas we only have true pathological 

assessments for some subjects. Using both the mismeasured surrogate outcome on all 

subjects and the true outcome on a subsample, called the validation sample, estimates of 

covariate effects can be improved.

Previous methods for estimating mismeasured survival outcomes assumed known 

mismeasurement rates of the surrogate, such as sensitivity and specificity of the diagnostic 

test used.2–5 These previous methods did not incorporate a validation subsample of true 

outcomes. Pepe6 developed an estimated likelihood method for data with surrogate 

outcomes on all subjects and true outcomes on only a subsample, but the method was not 

specifically for a survival outcome. Magaret7 extended the estimated likelihood method for 

discrete survival data without real-time validation using a proportional hazards model. 

Because validation cannot be conducted in real time, Magaret's method relies on the 

assumption that true outcomes are censored after false positives and that true and surrogate 

censoring times are equal when the surrogate outcome is censored (second full paragraph on 

page 5459 of Magaret7). In some situations, however, real-time validation is possible and 

the true and surrogate outcomes follow separate trajectories. In the AD example, subjects in 

the validation subsample can undergo regular clinical screenings while they also separately 

undergo independent CSF testing, so true outcomes are not necessarily censored after false 

positives. Therefore, the time to pathological AD detection may be before or after the time 

to clinical detection. Also, true and surrogate censoring times can be completely different. 

Zee and Xie8 adapted the estimated likelihood method6 to nonparametrically estimate a 

survival function assuming real-time validation is possible. The method does not assume 
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known mismeasurement rates of the surrogate outcome and allows for flexible censoring 

mechanisms.

In this paper, we extend the work of Zee and Xie8 to a semiparametric estimated likelihood 

method to estimate a parameter representing a binary covariate effect for discrete survival 

data with surrogate outcomes on all subjects and true outcomes on a subsample. Although 

we express our approach with a binary variable for ease of notation, the method can be 

easily modified for categorical variables with more than two levels. The rest of the article is 

organized as follows. We first describe the estimated likelihood and asymptotic properties 

for the estimated effect of a binary covariate. The Simulation study section contains results 

from testing the performance of our proposed estimator. In the Data example section, we 

demonstrate the use of our method using data from the Alzheimer's Disease Neuroimaging 

Initiative (ADNI) to estimate the effect of gender on time to detection of pathological AD. 

Finally, we summarize our results and discuss implications of using our proposed method in 

the Discussion.

Semiparametric estimated likelihood with a binary covariate

Maximum estimated likelihood estimation—We let T represent the true time to event 

and C represent the true right censoring time. The true observed time is represented by X = 

min{T, C} and true observed event indicator by δ = I(T ≤ C). Similarly, the surrogate 

outcome is denoted with asterisks, with T* and C* representing the surrogate event and 

censoring times, respectively, X* = min{T*, C*} representing the surrogate observed time, 

and δ* = I(T* ≤ C* ) representing the surrogate event indicator. We let Xk represent the kth 

unique, ordered observed true time point for k = 1, . . ., K, where K is the total number of 

unique true observed times. Let F0 represent the baseline survival function of the true time 

to event. We assume a proportional hazards model with F (t) = F0 (t)exp(βZ) where Z ∈ {0, 1} 

is the binary covariate of interest and represents the log hazard ratio comparing Z = 1 to Z = 

0. We assume that the covariate is available for all subjects. Finally, to allow for random 

censoring, we let G represent the censoring survival function.

As in the standard Cox model, we assume independent censoring conditional on covariates, 

and we allow the censoring mechanism to be fixed or random. Fixed, or type 1, censoring 

refers to a special case of administrative censoring where all subjects enter and leave the 

study at the same time, so censoring time is known at the start of the study and is equal for 

everyone. Random censoring refers to the situation where censoring time is unknown at start 

of study and may occur randomly due to circumstances such as loss to follow-up. A third 

type of censoring, sometimes known as generalized type 1 censoring, occurs when censoring 

time is known in advance but subjects enter the study at random times. In this case, subjects 

who are censored have different, random observation times and are therefore also called 

randomly censored in this paper. Because we assume real-time validation is possible, the 

true and surrogate outcomes can have different censoring times, which may occur if a 

subject drops out of only one part of a study. In the AD example, a subject may agree to 

both clinical and CSF screenings at the start of study, but after some time opt out of only the 

CSF screenings. Here, the subject's true censoring time may occur before the surrogate 

censoring time.
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Let V represent the validation set, the set of subjects for whom both the surrogate and true 

outcomes are available. Let V̄ represent the non-validation set, in which only the surrogate 

outcome is available and the true outcome is missing. There are n total subjects in the 

sample and nV in V . We assume V is a representative sample of the entire study cohort, i.e., 

those missing the true outcome are missing completely at random (MCAR). The estimated 

likelihood is a function of the log hazard ratio, β, and possible survival function values for 

the baseline event distribution and censoring distribution at each time point. In 

semiparametric survival analysis, the parameter of interest is often only the log hazard ratio, 

so the survival functions can be considered nuisance parameters. Using similar arguments as 

in Pepe and Zee and Xie,6;8 the estimated likelihood is given by

where

The outer sum is summed over all possible time points and the inner sum is summed over all 

possible event indicators. The conditional probability is estimated empirically with 

proportions,

where I(·) is the indicator function. Given surrogate outcome and covariate values of a non-

validation set subject and given each possible true outcome value, the estimated conditional 

probability is calculated by counting the number of subjects in the validation set with that set 

of values, out of the number of subjects in the validation set with that set of true outcome 

and covariate values. Therefore, the values observed in the validation set are used to 

estimate the association between the true and surrogate outcomes to determine the likelihood 

contributions of the non-validation set subjects.

The form of the empirical probabilities assumes that the covariate values are important in 

estimating the relationship between the true and surrogate outcomes. However, in cases 

where , or when the covariate is uninformative about 

the association between outcomes, then the covariates can be removed from the indicator 

functions in the probability estimates.

For subjects i ∈ V , the contribution to the likelihood is
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where xki is the observed time for subject i. This expression is exactly what it would be for a 

standard proportional hazards model. For subjects j ∈ V̄, the contribution to the likelihood is

The marginal distribution of the true outcome given covariates, P (xk, δ|Zj), for the non-

validation set has the same form as it did for the validation set. However, unlike in the 

validation set contribution, the outer sum prevents the censoring distribution from being 

factored out, which is necessary to obtain a consistent estimator for β in the presence of 

random censoring.

Although the parameter of interest is often only β, we maximize the estimated likelihood 

jointly over all possible parameter values. As in the nonparametric case, the maximum 

estimated likelihood estimate for the event (censoring) survival function is a step function 

that falls only at event (censoring) times observed in the validation set. We solve for 

maximum estimated likelihood estimates using the Nelder-Mead algorithm with constraints 

on both survival functions to be monotonically non-increasing and bounded between 0 and 

1. To obtain initial estimates for the event distribution parameters, we used the complete-

case Kaplan-Meier estimates based on the true observed times and true event indicators from 

the validation set. Initial parameters for the censoring distribution were determined by the 

complete-case Kaplan-Meier estimates calculated by inverting the event indicator to obtain a 

censoring indicator. The initial parameter for the covariate effect is set at 0 and is 

unconstrained.

Asymptotic properties of —We assume that the proportion of subjects in the 

validation set out of the total number of subjects does not have a zero limit, or 

. Then, similar arguments as in Theorem 3.1 of Pepe6 imply that  is a 

consistent estimator for β as n → ∞ and

where σ2 is the [1,1] element of the full variance covariance matrix

Zee et al. Page 5

Clin Trials. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where  is the information matrix based on the (non-estimated) log likelihood and  is the 

expected conditional variance of the score function of the non-validation contribution to the 

log likelihood,6

for parameters θ = {β, F0, G}. The first term in the Σ matrix represents the variance based 

on the maximum likelihood estimator, as in standard maximum likelihood analysis. The 

second term of Σ is needed in order to account for the additional variability introduced by 

estimating the likelihood with empirical probabilities. The  and  matrices can be 

estimated consistently by the expressions

for maximum estimated likelihood estimates  and

where

and
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In practice, we can calculate the estimated variance with numerical derivatives, analytical 

forms for derivatives, or using bootstrapping. As in the nonparametric case, we found that 

the numerical derivatives were sometimes incalculable with large amounts of missing data 

or a large number of parameters to estimate.

Simulation study

To test the performance of our proposed method in estimating a covariate effect, we 

conducted a series of simulations. We sampled values Z~Bernoulli(0.5) for the binary 

covariate and set the log hazard ratio at β = 1. We sampled true event times assuming a 

proportional hazards model with baseline distribution, T|Z = 0 ~Unif[1, 5], where survival 

time can only take integer values. For now, we assumed fixed right censoring at C = 4. The 

surrogate time to event was calculated as T* = T + ε, where ε ~Unif[0,ζ] and ε is 

independent of T . The maximum integer value of the discrete uniform distribution for ε was 

calculated as , where ⌊a⌋ represents the largest integer not 

greater than a and ρ represents the correlation between T and T* . We considered 

correlations of ρ ∈ {0.01, 0.25, 0.50, 0.75, 1}. We set the right-censoring time for the 

surrogate endpoint to be fixed also at C* = 4. To create a representative validation 

subsample, we simulated data MCAR by randomly selecting a proportion r ∈ {0.25, 0.50} 

of the sample to be missing true outcomes.

We conducted 500 simulation repetitions for each set of parameter values and used a total 

sample size of n = 500 for each repetition. For each simulated dataset, we used the proposed 

method to calculate estimates of the log hazard ratio, . We also calculated the complete-

case estimate of the log hazard ratio by using only available true outcomes in the validation 

set, the naïve estimate using only surrogate outcomes from all subjects, and the true estimate 

using true outcomes from all subjects (which would not be possible with real data but is 

consistent and optimally efficient). For each of the three standard estimators, we used the 

maximum likelihood estimates (MLEs) rather than partial likelihood estimates. Although 

partial likelihood estimates are more common in practice, the MLEs are more accurate and 

compare better to our proposed method which is also an MLE method. For each method, we 

calculated estimated bias (parameter estimate−true parameter values), observed sample 

standard deviations (SD), estimated standard errors , relative e ciency (RE) compared 

to the true estimator (where lower RE implies greater efficiency and RE equal to 1 implies 

optimal efficiency), mean squared error (MSE) estimates, and 95% coverage (Cov). We note 

that for all simulations presented in Tables 1 and 2, the observed sample standard deviations 

are similar to the standard error estimates calculated using the asymptotic theory for the 

proposed estimator.

Table 1 shows the results from the simulations with fixed (type 1) censoring. The log hazard 

ratio estimates estimated by our proposed method and the complete-case estimator always 

have little bias, whereas the naïve estimates are biased whenever the correlation between 

outcomes is less than 1. In a few cases, the standard errors for our proposed estimator were 

slightly higher than the complete-case estimator due to the penalty that is added to the 

variance of our proposed estimator for estimating the likelihood. However, the penalty is 
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small and overall our proposed estimator has similar standard errors compared to the 

complete-case estimator when the correlation between outcomes is low. When the 

correlation between outcomes increases, though, our proposed estimator is able to 

incorporate more information from the non-validation set subjects and therefore improves in 

efficiency, far surpassing the added penalty. At correlation of 1, which can be interpreted as 

the situation where we have a perfect surrogate, our proposed estimator has optimal 

efficiency.

As we observed in the nonparametric case, the efficiency gains of our proposed estimator 

changed with different amounts of missingness and correlation between true and surrogate 

outcomes. We conducted additional simulations to explore and confirm this relationship by 

testing amounts of missingness between 0 and 80. We found that our proposed estimator 

was more efficient than the complete-case estimator when the missingness was low. With 

high missingness, our proposed estimator became less efficient than the complete-case 

estimator. The point at which our estimator crosses from more to less efficient differs with 

the correlation between outcomes—as correlation between true and surrogate outcomes 

increases, the amount of missingness at the crossing point increases. Sometimes the 

correlation between outcomes is unknown or unable to be estimated. Regardless of the 

correlation between outcomes, our simulations showed that our proposed estimator has 

similar or greater efficiency than the complete-case estimator when the amount of 

missingness is 50% or less of the total sample. This was consistent with previous work.8

The previous simulations assumed measurement error was uniformly distributed and 

positive. We also conducted simulations assuming measurement error was geometrically 

distributed or uniformly distributed but could be positive or negative. Results are not shown, 

but were similar to those seen above.

Although we assumed true outcomes were MCAR, we also conducted additional simulations 

with data missing at random (MAR) to test the robustness of this assumption. To do so, we 

assumed that the probability of validation was pR ∈ {0.60, 0.70, 0.85} for subjects who had 

a positive surrogate outcome, and the probability of validation for subjects who had a 

negative surrogate outcome was 1 − pR. Under this scenario, we found that our proposed 

method and the complete-case method were both somewhat biased, particularly with higher 

values of pR. However, our proposed estimator was less biased and therefore had better 

coverage than the complete-case estimator with higher correlations between outcomes.

We also simulated data assuming random censoring and changed the amount of censoring 

by sampling true censoring times C from a uniform distribution. We considered a small 

amount of censoring (approximately 17%) using C ~Unif[3, 4], a moderate amount of 

censoring (approximately 36%) using C ~Unif[1, 4], and a large amount of censoring 

(approximately 84%) using C ~Unif[1, 2]. Surrogate censoring times were simulated by C* 

= C + γ where γ ~Unif[0, 2]. The results of these random censoring simulations are shown in 

Table 2. Similar to the results with fixed censoring, our proposed estimator and the 

complete-case estimator have little bias compared to the naïve estimator and our proposed 

estimator is more efficient than the complete-case estimator at any amount of censoring.
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To demonstrate the utility of our proposed method with real-time validation, we compared 

our proposed method to Magaret's.7 We sampled event times assuming a baseline hazard 

rate of 2, a binary covariate, Z ~Bernoulli(0.5), and assumed a proportional hazards model 

with log hazard ratio of β = 0.70. Surrogate event times were calculated as T* = T + ε, ε 

~Unif[0, 2]. We simulated fixed but unequal true and surrogate censoring times, C = 4 and 

C* = 5, and also simulated random censoring by sampling C from Unif[4, 5], Unif[2, 5], and 

Unif[1, 3], resulting in approximately 25, 35, and 55 percent censoring, respectively. For 

random censoring, surrogate censoring times were calculated as C* = C + γ, γ ~ Unif[0, 2]. 

We used total sample sizes of n ∈ {240, 420, 630} with 50% missingness. For each 

simulated dataset, we used our proposed method and Magaret's method to calculate 

estimates of the log hazard ratio. Bias and observed sample variances for these comparisons 

are shown in Table 3. Our proposed estimator has little bias; however, the method developed 

by Magaret7 is biased when we have real-time validation.

Data example: effect of gender on time to pathological detection of Alzheimer's disease

To illustrate our proposed method, we considered data (retrieved on 26 July 2013) from the 

ADNI study.9 Participants in this observational study were assessed at predetermined time 

points for genetic, biomarker, and imaging markers related to AD. A description of the 

ADNI study is in Appendix 1. In the current study, participants who were non-AD at 

baseline were included (n = 186). Participants had to be non-AD by both a clinical and a 

CSF-based assessment at baseline to ensure all participants were event free for both 

outcomes at study entry. For the CSF-based outcome, Aβ > 192pg/ml was classified as non-

AD and Aβ ≤ 192pg/ml was classified as AD.1 CSF assessments were completely 

independent from clinical assessments.

The true outcome of interest was time to pathological detection of AD, measured in years. 

Since AD is a chronic disease with slow progression10 and annual follow-up times were 

predetermined by study design, survival time was considered to be discrete. For every 

patient, the surrogate outcome of time to clinical AD or last follow-up was determined. A 

subset of 110 patients continued to have CSF assays performed after baseline, independently 

from clinical screenings, from which the true time to pathological AD or last follow-up was 

determined. Therefore, the validation set was approximately 59% of the total sample size. 

All patients in the study also had information on gender.

Using our proposed method, we estimated the log hazard ratio, , of AD in females 

compared to males. We also estimated the log hazard ratio with the complete-case estimator 

using only 110 CSF diagnoses and the naïve estimator using only 186 clinical diagnoses. For 

the standard estimators, we conducted estimation using both the maximum likelihood 

method and the more widely used partial likelihood method with Efron's approximation for 

ties.11 Table 4 shows the log hazard ratio and standard error estimates for gender. Both our 

proposed estimator and the complete-case estimator found a small positive log hazard ratio 

comparing females to males, which is similar to some literature indicating higher incidence 

of AD in women.12;13 However, the naïve estimate is large and negative. In this particular 

example comparing genders, the estimated standard errors from our proposed method and 

the complete-case method were similar.
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Discussion

We extended the nonparametric estimated likelihood method for data with surrogate 

endpoints and an internal validation subsample to the proportional hazards model with a 

binary covariate. Our method allows for real-time validation and allows for flexible 

censoring mechanisms. Our proposed log hazard ratio estimator is consistent and 

asymptotically normal. Through simulation studies, we found that our proposed estimate is 

unbiased and its variance decreases as correlation between the surrogate and true outcome 

increases. By using both surrogate and true endpoints, the proposed covariate effect 

estimator can outperform both complete-case and naïve estimators.

As in the nonparametric case, we found that our proposed estimator behaves similarly to the 

complete-case estimator when the correlation between the uncertain and true outcomes is 

low. As correlation increases, the non-validation set subjects contribute more information 

and therefore decrease the variance of the parameter estimate by providing more power. 

When correlation between outcomes is 1, or when the surrogate outcome has no 

measurement error, then our proposed estimator reduces to the maximum likelihood 

estimate based on complete true outcomes (no missingness). Therefore, our proposed 

method is most useful when correlation between outcomes is high.

In our current study, we evaluated the use of an estimated likelihood method for survival 

data with a single binary covariate. The method can easily be extended to consider multiple 

covariates, which would be useful in order to adjust for confounding variables or to consider 

categorical variables with more than two levels. Further study on the number of allowable 

covariates is warranted; however, based on the events per variable (EPV) testing in Zee and 

Xie,8 it is expected that a similar EPV of 4 would apply to multivariable models. This would 

imply that a minimum of 4 events should be observed for each parameter to be estimated. 

For continuous covariates, however, a modified approach must be developed, since 

likelihood contributions would often be 0 for non-validation set subjects when using the 

current method. An estimated likelihood method that incorporates smooth kernel functions 

in the empirical probability estimates of the likelihood function is currently under 

investigation. Additionally, other applications may involve interval censoring, for which our 

methods would need to be modified to be suitable.

Optimal study design strategies are currently under investigation, in order to determine the 

total size of the sample and size of the validation subset that would be needed to design new 

trials with these data characteristics. For example, in clinical trials that aim to evaluate a 

treatment effect, it is valuable to calculate sample sizes that would be needed in each 

treatment group to achieve a pre-specified power to detect the effect size. The improvements 

in efficiency that can be obtained from using the proposed method would decrease the 

number of true outcomes needed compared to using standard methods.

Due to the difficulty in obtaining true outcomes on many subjects, the methods we have 

proposed have useful applications in clinical trials. Designing studies such that surrogate 

outcomes are collected on all patients and true outcomes only collected on a subsample of 

patients can save on trial costs and ensure that an adequate number of patients are enrolled. 
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Using our proposed semiparametric estimated likelihood method to analyze these data can 

provide accurate and powerful statistical inference to evaluate treatment effects.
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Appendix 1 ADNI Study Description

The ADNI was launched in 2003 by the National Institute on Aging, the National Institute 

of Biomedical Imaging and Bioengineering, the Food and Drug Administration, private 

pharmaceutical companies and non-profit organizations, as a $60 million, 5-year public-

private partnership. The primary goal of ADNI has been to test whether serial magnetic 

resonance imaging, positron emission tomography, other biological markers, and clinical 

and neuropsychological assessment can be combined to measure the progression of mild 

cognitive impairment (MCI) and early AD. Determination of sensitive and specific markers 

of very early AD progression is intended to aid researchers and clinicians to develop new 

treatments and monitor their effectiveness, as well as lessen the time and cost of clinical 

trials.

The Principal Investigator of ADNI is Michael W. Weiner, MD, VA Medical Center and 

University of California - San Francisco. ADNI is the result of e orts of many co-

investigators from a broad range of academic institutions and private corporations, and 

subjects have been recruited from over 50 sites across the U.S. and Canada. The initial goal 

of ADNI was to recruit 800 subjects but ADNI has been followed by ADNI-GO and 

ADNI-2. To date these three protocols have recruited over 1500 adults, ages 55 to 90, to 

participate in the research, consisting of cognitively normal older individuals, people with 

early or late MCI, and people with early AD. The follow up duration of each group is 

specified in the protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited 

for ADNI-1 and ADNI-GO had the option to be followed in ADNI-2. For up-to-date 

information, see www.adni-info.org.

ADNI is funded by the National Institute on Aging, the National Institute of Biomedical 

Imaging and Bioengineering, and through generous contributions from the following: 

Alzheimer's Association; Alzheimer's Drug Discovery Foundation; Araclon Biotech; 

BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan 

Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Ho mann-La Roche Ltd and 

its affliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen 

Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson 

Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso 

Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis 

Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Synarc Inc.; and 

Takeda Pharmaceutical Company. The Canadian Institutes of Rev December 5, 2013 Health 

Research is providing funds to support ADNI clinical sites in Canada. Private sector 
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contributions are facilitated by the Foundation for the National Institutes of Health 

(www.fnih.org). The grantee organization is the Northern California Institute for Research 

and Education, and the study is coordinated by the Alzheimer's Disease Cooperative Study 

at the University of California, San Diego. ADNI data are disseminated by the Laboratory 

for Neuro Imaging at the University of Southern California.
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Table 1

Simulation Results for Fixed Censoring

r ρ Method Bias SD SÊ MSE RE Cov

25 0.01 Proposed 0.013 0.124 0.119 0.016 1.44 0.94

Comp 0.010 0.123 0.119 0.015 1.42 0.95

Naïve −1.115 0.697 0.912 1.731 45.47 0.92

0.25 Proposed 0.013 0.124 0.119 0.016 1.44 0.94

Comp 0.010 0.123 0.119 0.015 1.42 0.95

Naïve −0.510 0.251 0.246 0.323 5.89 0.41

0.50 Proposed 0.012 0.122 0.117 0.015 1.39 0.94

Comp 0.010 0.123 0.119 0.015 1.42 0.95

Naïve −0.445 0.170 0.163 0.227 2.70 0.23

0.75 Proposed 0.008 0.115 0.113 0.013 1.24 0.95

Comp 0.010 0.123 0.119 0.015 1.42 0.95

Naïve −0.223 0.124 0.116 0.065 1.44 0.51

1.00 Proposed 0.007 0.106 0.103 0.011 1.04 0.94

Comp 0.010 0.123 0.119 0.015 1.42 0.95

Naïve 0.004 0.103 0.103 0.011 1.00 0.94

50 0.01 Proposed 0.038 0.158 0.146 0.026 2.34 0.93

Comp 0.026 0.153 0.147 0.024 2.18 0.95

Naïve −1.105 0.715 0.917 1.733 47.81 0.92

0.25 Proposed 0.040 0.160 0.146 0.027 2.40 0.92

Comp 0.026 0.153 0.147 0.024 2.18 0.95

Naïve −0.510 0.251 0.246 0.323 5.89 0.41

0.50 Proposed 0.033 0.154 0.143 0.025 2.21 0.93

Comp 0.026 0.153 0.147 0.024 2.18 0.95

Naïve −0.445 0.170 0.163 0.227 2.70 0.23

0.75 Proposed 0.020 0.137 0.130 0.019 1.76 0.94

Comp 0.026 0.153 0.147 0.024 2.18 0.95

Naïve −0.223 0.124 0.116 0.065 1.44 0.51

1.00 Proposed 0.016 0.110 0.103 0.012 1.13 0.93

Comp 0.026 0.153 0.147 0.024 2.18 0.95

Naïve 0.004 0.103 0.103 0.011 1.00 0.94

Note: True β=1; r: percent missing; ρ: correlation between true and surrogate outcomes; Proposed: proposed estimator; Comp: complete-case 

estimator; Naïve: naïve estimator; SD: standard deviation of estimates across simulations; : estimated standard error of the estimate; MSE: 

mean squared error; RE: relative efficiency compared to true estimator; Cov: 95% coverage.
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Table 2

Simulation Results for Random Censoring and a Binary Covariate

r C Method Bias SD SÊ MSE RE Cov

25 17 Proposed 0.007 0.114 0.112 0.013 1.17 0.94

Comp −0.000 0.121 0.122 0.015 1.32 0.95

Naïve −0.145 0.110 0.107 0.033 1.09 0.73

36 Proposed 0.010 0.129 0.129 0.017 1.14 0.94

Comp 0.009 0.135 0.140 0.018 1.25 0.96

Naïve −0.125 0.132 0.123 0.033 1.19 0.80

84 Proposed 0.005 0.161 0.157 0.026 1.18 0.95

Comp 0.004 0.165 0.166 0.027 1.25 0.95

Naïve −0.132 0.149 0.153 0.040 1.01 0.86

50 17 Proposed 0.023 0.129 0.124 0.017 1.50 0.93

Comp 0.004 0.152 0.151 0.023 2.08 0.94

Naïve −0.145 0.110 0.107 0.033 1.09 0.73

36 Proposed 0.026 0.151 0.147 0.023 1.56 0.96

Comp 0.022 0.169 0.173 0.029 1.95 0.96

Naïve −0.125 0.132 0.123 0.033 1.19 0.80

84 Proposed 0.013 0.186 0.184 0.035 1.59 0.95

Comp 0.003 0.201 0.205 0.040 1.85 0.95

Naïve −0.132 0.149 0.153 0.040 1.01 0.86

Note: True β=1; r: percent missing; C: percent censoring; Proposed: proposed estimator; Comp: complete-case estimator; Naïve: naïve estimator; 

SD: standard deviation of estimates across simulations; : estimated standard error of the estimate; MSE: mean squared error; RE: relative 

efficiency compared to true estimator; Cov: 95% coverage.
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Table 3

Simulation Results Compared to Magaret7

N C Method Bias Var

240 fixed Proposed −0.021 0.031

Magaret −0.246 0.026

25 Proposed 0.010 0.031

Magaret −0.123 0.027

35 Proposed 0.002 0.040

Magaret −0.078 0.038

55 Proposed −0.008 0.058

Magaret −0.158 0.047

420 fixed Proposed −0.004 0.018

Magaret −0.249 0.013

25 Proposed −0.000 0.018

Magaret −0.122 0.015

35 Proposed 0.015 0.022

Magaret −0.055 0.022

55 Proposed 0.013 0.035

Magaret −0.140 0.029

630 fixed Proposed −0.013 0.011

Magaret −0.248 0.009

25 Proposed −0.008 0.012

Magaret −0.115 0.011

35 Proposed −0.001 0.013

Magaret −0.066 0.013

55 Proposed −0.005 0.019

Magaret −0.153 0.018

Note: C: type or percent of censoring if random; Proposed: proposed estimator; Magaret: estimator from Magaret;7 Var: variance of estimates 
across simulations.
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Table 4

Data Example Log Hazard Ratio and Standard Error Estimates

Proposed Comp (MLE) Comp (Partial) Naïve (MLE) Naïve (Partial)

Female

β̂ 0.306 0.164 0.218 −1.609 −1.689

SE 0.630 0.610 0.556 0.839 0.775

Proposed: proposed estimator; Comp: complete-case estimator; Naïve: naïve estimator; MLE: estimated using the maximum likelihood method; 
Partial: estimated using the partial likelihood method; SE: estimated standard error.
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